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Epileptic seizures are generally considered to result from excess and synchronized neural activity. Addition-
ally, changes in amplitude and frequency are often seen in local field potential or electroencephalogram
recordings during a seizure event. To investigate how seizures initiate, and how dynamical changes occur
during seizure progression, we develop a neocortical network model based on a model suggested by Wilson �J.
Theor. Biol. 200, 375 �1999��. We propose a possible mechanism for seizure initiation as a bifurcation, and
suggest that experimentally observed changes in field potential amplitude and frequency during the course of
a seizure may be explained by noise-induced transitions among multistable states.
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Neural synchronization occurs in a wide range of animals,
from invertebrates to humans �1–3�. Since synchronization
has been shown to play a role in processes ranging from
simple sensory transduction �2� to perception and learning
�3�, and has also been detected in pathological conditions
such as Parkinson’s disease �4,5�, understanding the mecha-
nisms of synchronization may be a critical step in elucidating
how neural systems work.

Epileptic seizures have long been considered to result
from excess and synchronized brain activity �6�, though
some recent studies suggest that this picture may be an over-
simplification �7�. Furthermore, changes in amplitude and
frequency of electrical activity are often observed during sei-
zure events in both human patients �8� and animal models
�9�. Various computational models of seizure onset and pro-
gression have been developed �10,11�, but many questions
remain unanswered.

In this paper, we report a possible dynamical mechanism
for seizure initiation, and for dynamical changes in electrical
activity during seizure events. We develop a model of a neo-
cortical network based on a nonlinear model suggested by
Wilson �12� �Eqs. �1�–�4� below�. The effect of the potas-
sium channel blocker 4-aminopyridine �4-AP�, used experi-
mentally to induce seizures �13�, is simulated by decreasing
the model’s maximal K+ channel conductance �gK�. We use
phase reduction analysis �14� to demonstrate that the phase
relationship of a pair of synaptically coupled neurons under-
goes a bifurcation as gK is varied. Multistability is observed
in the stable fixed phase difference, and a dramatic increase
in the activity of a larger network of neurons correlates with
the bifurcation.

The dynamics of a single neuron is represented by a set of
nonlinear ordinary differential equations �12�,

C
dV

dt
= − m��V��V − 0.5� − gKR�V + 0.95� − gTT�V − 1.2�

− gHH�V + 0.95� + I �1�

dR

dt
=

1

�R
�− R + R��V�� , �2�

dT

dt
=

1

�T
�− T + T��V�� , �3�

dH

dt
=

1

�H
�− H + 3T� , �4�

where V is the membrane potential, and R, T, and H are the
conductance variables for the K+, Ca2+, and Ca2+-mediated
K+ hyperpolarizing currents, respectively. The following
variables depend nonlinearly on the voltage V: m��V�
=17.8+47.6V+33.8V2, R��V�=1.24+3.7V+3.2V2, T��V�
=8�V+0.725�2. System parameters are given as follows: C
=1.0 �F cm−2, I=0.7 nA, �T=14 ms, and �H=45 ms. The
first term in Eq. �1� represents the Na+ current; the Na+ chan-
nel dynamics is incorporated into m��V� instead of using a
conductance variable. In the model equations, V is scaled by
1/100 with respect to realistic membrane potential values in
order to keep the constants in m�, etc., within a reasonable
range. In the figures below, we rescale V by 100 �mV� in
order to return to biologically realistic values. The model can
be tuned to exhibit the behavior of the three major subtypes
�regular spiking, bursting, and fast spiking inhibitory� of
neocortical neurons by changing gK, gT, and gH �12�. In this
paper, we restrict ourselves to a single subtype, the regular
spiking mode �gK=26.0, gT=0.1, and gH=5.0�, which corre-
sponds to the largest population of neocortical neurons �15�.
Chemical synaptic coupling is modeled using an alpha func-
tion �16�:

df

dt
=

1

�syn
�− f + ��Vpre − ��� , �5�
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dS

dt
=

1

�syn
�− S + f� , �6�

where Vpre represents the voltage of the presynaptic neuron,
�syn=0.5 ms, �=−0.2 mV, and the Heaviside function
��Vpre−��=1 for Vpre−��0 and 0 for Vpre−��0. The
effect of synaptic coupling is incorporated into the dynamics
of each neuron by adding the term −Sgsyn�V−Vsyn� to Eq. �1�,
where gsyn, the synaptic strength, is set at 0.1, and Vsyn, the
synaptic reversal potential, is 0 mV, which mimics the effect
of an excitatory synapse.

To study how changes in gK affect the behavior of a pair
of coupled neurons, we applied phase reduction analysis �14�
to the system. Using this method, a pair of weakly coupled
limit cycle oscillators can be reduced to a system of one
variable, and the stability of the phase difference between the
oscillators can be determined. We consider the two neurons i
and j as stable limit cycle oscillators. If the dynamics of
neuron i is represented by dXi�t� /dt=F�Xi�+G�Xi ,Xj�, its
dynamics can be reduced to the equation for the phase vari-
able �i,

d�i

dt
= 	 + H�� j − �i� , �7�

assuming that both neurons have the same natural frequency
	, and with H given by

H�� j − �i� =
1

T0
�

0

T0

u�t�TG„
�t�,
�t + � j − �i�…dt �8�

�14�, where G is the coupling between the oscillators, 
 is
the periodic solution of a single oscillator with period T0, and
u�t� is the periodic solution of the adjoint equation of
dXi�t� /dt=F�Xi�:

du�t�
dt

= − DF�
�t��Tu�t� . �9�

Here, DF�
�t�� is the Jacobian matrix and T represents the
matrix transpose. We determined H by numerically solving
the adjoint equation �17� for our system. The dynamics of the
phase difference between the two neurons can be represented
as

d�

dt
= H�− �� − H��� , �10�

where �=�i−� j. A fixed phase difference is thus any value
�0 for which d� /dt=0. The slope of d� /dt at �0 gives the
stability of the phase difference, with a negative slope corre-
sponding to a stable, and a positive slope corresponding to an
unstable, phase difference. Here, we follow Pikovsky and
others in considering that a fixed phase difference is indica-
tive of synchronization between two oscillators �18�.

Plots of d� /dt as a function of � are shown in Fig. 1. At
normal gK �gK=26.0�, the stable phase difference is small
�filled circles, inset, Fig. 1�a�� but nonzero, so that the neu-
rons are almost, but not exactly, in phase. In fact, two stable
states coexist, one where neuron i fires first and neuron j fires
shortly afterward, and vice versa. Since the two neurons are

identical, this bistability is trivial in the sense that, if � is
stable, then so is 2�−�. The time delay in firing between the
two neurons corresponds to �syn. A similar “trivial” bistabil-
ity was observed by Van Vreeswijk et al. in the Hodgkin-
Huxley neural model with synaptic coupling �19�.

At high values of gK, only the “trivial” bistability is ob-
served. At gK�5.0, a subcritical pitchfork bifurcation oc-
curs, as a result of which an antiphase firing pattern becomes
stable �Fig. 2�. Also, at gK�5.0, the “trivial” bistable states
coalesce into a single stable branch �at �=0� corresponding
to exactly in-phase firing. Thus, for low conductance, there
exists a “nontrivial” bistability. These results were confirmed
by numerical integration �fourth-order Runge-Kutta, dt
=0.01 ms�, using a variety of different initial conditions
�data not shown�.

To study the effect of noise on the behavior of a pair of
neurons, an independent Gaussian white noise term 
�t� was
added to each dV /dt equation; the noise was defined such
that �
�t��=0 and �
�t�
�s��=D��t−s�, where D is the noise
intensity. The stochastic differential equations were solved
by the Heun method �20� with dt=0.01 ms. Transitions be-
tween the bistable states were observed for gK=0, as illus-
trated by the “mean field” �average voltage from the two
neurons� in Fig. 3. At normal gK �Fig. 3�a��, transitions be-
tween the trivial bistable states are observed, which do not
significantly affect the mean field. Since the spikes from the
two neurons rarely coincide in time, the mean field has an
amplitude half as large as the transmembrane potential of a
single neuron throughout most of the simulated time series.
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FIG. 1. d� /dt at gK= �A� 26.0; �B� 0. Open and filled circles
correspond to unstable and stable fixed points, respectively. Phase
difference is normalized to �0,1�. The inset shows a blowup around
�=0.
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FIG. 2. Bifurcation diagram. Thick and thin lines represent
stable and unstable fixed phase differences, respectively. Phase dif-
ference is normalized to �0,1�.
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The sharp spikes in the mean field correspond to the mo-
ments when the two neurons fire simultaneously. At gK=0
�Fig. 3�b��, noise-induced transitions between in-phase and
antiphase states were observed; these transitions significantly
affect the mean field, in contrast to the case of normal gK.

In order to investigate the role of decreased gK on the
activity of a larger array, we constructed a square lattice of
20�20 neurons with bidirectional nearest neighbor synaptic
coupling. We suggest that the results of phase reduction
analysis for two neurons can give a qualitative explanation of
the network behavior. When gK was decreased to zero �Fig.
4�a�, 2.5�104 ms�, to simulate the addition of 4-AP, a dra-
matic increase in the mean field amplitude was observed
�Fig. 4�a��. A raster plot �Fig. 4�b�� shows that, before the
decrease in gK, the neurons do not all fire in phase, which
results in a small mean field amplitude. We suggest that this
corresponds to the case of two neurons, in which a nonzero
phase difference is stable, whereas the in-phase state is un-
stable. In contrast, after the decrease in gK, where the in-
phase state is stable, the neurons fire in phase, leading to
large-amplitude mean field oscillations. These results, in a
spatially extended array of neurons, are consistent with the
result of phase reduction analysis for a pair of neurons.

We investigated the effect of noise on the network firing
pattern by adding an independent Gaussian white noise term
to each dV /dt equation. As in the case without noise �Fig. 4�,
a dramatic increase of the amplitude of the mean field was
observed when gK was decreased to 0 �data not shown�. With
gK=0, we observed modulations in the amplitude and fre-
quency of the mean field �Fig. 5�a��. During the intervals
when the mean field amplitude is relatively large, most of the
neurons fire in phase �Fig. 5�d��. On the other hand, when the
amplitude is relatively small, some groups of neurons fire in
phase with each other, but these small subpopulations are
often out of phase with other subpopulations �Fig. 5�c��. This
suggests that there are similar noise-induced transitions be-
tween ‘‘in-phase’’ and ‘‘antiphase’’ network activities, analo-
gous to the case of two neurons. We emphasize that both the
‘‘in-phase’’, large-amplitude network activity and the ‘‘an-
tiphase’’, low-amplitude network activity occur during a
simulated “seizure,” i.e., when gK=0.

Clustering is a phenomenon in which multiple popula-
tions, each exhibiting in-phase synchronization, but not in
phase with each other, emerge from a larger group of oscil-
lators. Clustering has been observed in theoretical studies of

coupled oscillators �22� and might play a role in neural sys-
tems �23�. To quantify the degree of clustering in the net-
work, we measured the distribution of the phases of all the
neurons. We defined the instantaneous phase of the ith neu-
ron as �i�t�=2��t− ti,n� / �ti,n+1− ti,n�, where ti,n is the nth
spike time of the ith neuron and ti,n� t� ti,n+1 �18�. We cal-
culate

Rm�t� = 	 1

N


k=1

N

exp�im�k�t��	 , �11�

which can be used to detect the m-modal distribution of a
circular �periodic� variable as follows �21�. For a given time
t, a unit vector is assigned for each neuron with the phase
m��t� in the Gaussian plane. Then the magnitude of the re-
sultant vector, normalized by the total number of neurons, is
represented by Rm�t�. For m=1, the magnitude of the result-
ant vector would be high �close to 1� in the case of a single
cluster, in which the neurons exhibit in-phase synchroniza-
tion, whereas, in the case of antiphase clustering, the two
populations would form vectors with opposite directions, re-
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FIG. 3. Mean field for a pair of coupled neurons. gK= �A� 26;
�B� 0. D=1.0�10−4 in both cases.
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FIG. 4. �A� Mean field of network without noise. �B� Raster plot
corresponding to the time interval represented by the dashed rect-
angle in �A�.
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sulting in a small resultant vector. For m=2, two antiphase
clusters would have vectors in the same direction, leading to
a large resultant vector. Therefore, a relatively large positive
value of R2�t�−R1�t� is a signature of antiphase clustering.
As shown in the bottom panel of Fig. 5�b�, this occurs during
the interval of lower-amplitude firing �compare Fig. 5�a�, be-
tween 420 and 460 s, and the raster plot in Fig. 5�c��.

The transitions between mean field firing patterns ob-
served in the network simulation captured the qualitative as-
pects of local field potential transitions observed in 4-AP-
induced seizures in the rat neocortex. Figure 6�a� shows such
a transition in the simulated mean field from our network
model, in comparison with segments of field potential re-
cording in the rat neocortex in vivo �Figs. 6�b� and 6�c��,
following the focal injection of 4-AP �9�. Based on these
observations, we suggest that neural activity during 4-AP-
induced seizures may be caused by a bifurcation in the stable
phase difference between neurons. Furthermore, our results
suggest that changes in amplitude and frequency of the field
potential, reminiscent of the transitions between so-called
spike-and-wave patterns and low-voltage fast activity, seen
in human patients �8� may be explained by noise-induced
transitions among multiple stable states.

Several dynamical system models have been proposed to
describe seizure dynamics �10,11�. Suffczynski et al. �10�
have proposed a possible mechanism of seizure initiation
where transitions between bistable states �epileptic and non-
epileptic� are caused by noise. �In contrast, our model relates
such transitions to shifts between firing patterns during a
seizure.� Wendling et al. �11� have shown that various firing
patterns of the electroencephalogram signal can be produced
by tuning the synaptic “coupling strength.” These models
suggest different mechanisms from ours for the initiation and

development of seizure dynamics. However, none of these
models need be mutually exclusive. Since seizures can arise
via a vast array of biological mechanisms, it is probably
reasonable to assume that the underlying dynamical mecha-
nisms of their onset and development can also fill a wide
spectrum.

We conclude with a brief discussion of the limitations and
shortcomings of the present model. All the synaptic connec-
tions in the model used here were bidirectional, for such a
simple coupling scheme allows direct translation from the
two-neuron phase reduction analysis to our larger array
simulations. While the percentage of unidirectional excita-
tory synapses in the neocortex outweighs that of bidirec-
tional excitatory synapses �24,25,28�, it has been reported
that, for a subtype of neocortical pyramidal neurons, the pro-
portion of bidirectional connections is much larger than that
expected from a random network; moreover, the synaptic
strength is stronger in a pair of neurons with bidirectional
synaptic coupling than unidirectional coupling �28�. These
considerations lead us to consider a bidirectionally coupled
array as a valid “first pass” model for our study of the effects
of 4-AP on neocortical synchrony.

As further simplification, inhibitory neurons were not
considered in the present model. Although a large percentage
of neocortical neurons and synapses are excitatory �15� and
disinhibition resulting from the blockage of GABA recptors
by drugs such as bicuculline and picrotoxin can cause sei-
zures �29�, the activity of inhibitory neurons has also been
shown to be an important contributor to synchronous neural
firing during various seizures induced by other drugs, includ-
ing 4-AP �30�. A critical next step will be to add inhibitory
neurons to the present model.

The increase of extracellular potassium concentration has
been observed during epileptiform activity �31�. Several
modeling studies predict that the increase of extracellular
potassium can play a role in transitions and synchronization
in epileptic activity �26,27�. In the present model, however,
changes in the concentration of extracellular potassium were
not taken into account, again in order to develop a prelimi-
nary, simplified model capturing some basic features of the
system’s dynamics. In addition to the role of extracellular
potassium, other complex effects, such as the role of astro-
cytes and the effects of long-range neocortical connections,
will be addressed in future expansions of the current model.
Despite its shortcomings, our synaptically-connected excita-
tory network model provides testable hypotheses of bifurca-
tion and noise-induced transitions as potential mechanisms
underlying key elements of neocortical seizure dynamics.
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